From OpenGL to

™

. 1 . ! 5
T W, .‘.- L 4 .-i .
; A Y
e 3L b %
R T O
i e 1 CART, - R |'.“-! -
- 5 SO RN s

G

Khronos Munich Chapter Meetlngzo 6/

KHRCONOQS Sascha Willems

. www.saschawillems.de / @SaschaWillems2

Munich

CHAPTER

http://www.saschawillems.de/
https://twitter.com/SaschaWillems2

Introduction

Started using OpenGL around 2000 (as a hobby)

= |nitially with Delphi, but moved to C++

= Helped founding the DelphiGL OpenGL Wiki

= Still maintain the OpenGL Pascal Header translations
Not a professional 3D developer

Maintainer of the OpenGL/ES Hardware Databases
Member of the Khronos Vulkan Advisory Panel
Vulkan launch day contributions

= Open Source Vulkan examples (C++)

= Vulkan hardware database

http://www.gpuinfo.org/

Vulkan Hardware Database

‘PUinfo.org

Vulkan Hardware Database

e Open Source '
m Client for Linux, Windows and Android (C++, Qt)
= Online data base (PHP, MySQL)
e Contains all implementation info available to the API
= Features and limits
= Format information (incl. flags)
= Queue families
= Memory properties
= And more...
e Global statistics (extensions, formats)
e Compare implementations
e Over 200 reports (and counting)

1 https://github.com/SaschaWillems/VulkanCapsViewer

Vulkan Hardware Database

Comparing features

NVIDIA NVIDIA a X AMD AMD Radeon (TM)
1.0.0 (1.0.2) 0.0.1 (0.0.1)
androi) (arm)
true
depthB mp true
depthBounds true
depthClamp true
true
dualSrcBlend true
true
fragmentStoresAndAtomics true

fullDrawIndexUint32 true

geometryShader true

true
true
true
argePoints true
logicOp true

multiDrawIndirect true

Vulkan Hardware Database

Property
device
version

0s

Heapindex

Flags

AMD AMD Radeon (TM) R9 380

0.9.0 (1.0
gentoo unkno

4

0

DEVICE_LOCAL_BIT

1

DEVICE_LOCAL_BIT
HOST_VISIBLE_BIT
HOST_COHERENT_BIT

2
HOST_VISIBLE_BIT
HOST_COHERENT_BIT

2

HOST_VISIBLE_BIT
HOST_COHERENT_BIT
HOST_CACHED_BIT

ImgTec PowerVR Rogue G6430

0.959.662 (1.0.3)

android 6.0.1 (i386)

1

0

HOST_VISIBLE_BIT
HOS HERENT_BIT

Comparing memory types

NVIDIA GTX 980
364.51.0.0 (1.0.4)
windows 7 (x86_64)

4

1

none

0

DEVICE_LOCAL_BIT

1

HOST_VISIBLE_BIT
HOST_COHERENT_BIT

1

HOST_VISIBLE_BIT

Vulkan examples

https://github.com/SaschaWillems/Vulkan

https://github.com/SaschaWillems/Vulkan

Vulkan Examples

Demonstrating Vulkan functionality and techniques
From an explicit "Hello World" triangle...

= | oading meshes

= Using pipelines

= Multi sampling

= Deferred rendering (MRT)

= Shadow mapping

» Different shader stages (compute, tessellation, etc.)
...to multi threaded command buffer generation
Examples try to concentrate on one single thing
Around 30 examples with more to come

Vulkan Examples

Open Source

MIT license

C++11 (and some C++14 features)

Intented as a starting point for Vulkan development
Tried to comment as much as possible

If you prefer learning from source rather than tutorials
Not a framework, abstraction only where necessary
NN ESS

= Swap chain

Working on Linux, Android and Windows

= Running on different vendors (AMD, NVIDIA, Intel*)
= Support for different compilers (via CMAKE)

1 https://github.com/SaschaWillems/Vulkan

From to

An explicit journey

Coming from OpenGL

Steep learning curve
= Not so steep if you did AZDO or DX12
= But people still use immediate GL...
Entirely new AP|
= More code to get things done (it's explicit)
= More responsibility
= Need to implement stuff OpenGL hides
= New concepts to learn
Some features missing yet (e.g. transform feedback)
Vulkan is not for everyone
OpenGL won't go away ;)

11

What do | get?

A clean and modern new API
= Same across desktop and mobile

Better performance!
= Single threaded (lower driver overhead)
= Multi threading!
Graphics AND compute (mandatory)
SPIR-V (no more GLSL compiler woes)
Validation layers
Better platform abstraction

SDK from LunarG 2

1 If done right ;)

2 http://vulkan.lunarg.com

12

indow ystem ntegration

Replacement for the OpenGL render context '
Platform specific surface

m Fnable instance extension (VK_KHR_ _SURFACE_EXTENSION_NAME)
u Request with (vkCreate SurfaceKHR())
Swapchain

= Decoupled from platform

= Manages images and memory

= Usually two images (present and render)
Adding new platforms only a few lines of code!

L But much cleaner

13

SPIR for shaders

Binary intermediate shader representation
Vulkan core takes shaders as SPIR-V only

= No more GLSL shaders '

Source can (and mostly will) be GLSL ("front-end")

= Use glslangvalidator (SDK) to convert to SPIR-V

= Will also check shaders against current glsl specs
No need to compile shaders anymore

= No more glsl compiler woes amongst different IHVs
= Faster loading times

Multiple shader entry points possible 2
1 Though e.g. NVIDIA has extension to directly load GLSL

- May not be implemented everywhere (yet)

14

No more state machine

e Global state machine replaced by ipeline tate Dbjects
= Forces you to layout your render pipeline upfront

= More work (and planing) for you
= Much easier (to optimize) for the driver (=faster)
= Some states still dynamic (line width, depth bias)

e OpenGL

// Anywhere you want
glPolygonMode (GL FRONT AND BACK, GL LINE/GL FILL);

e Vulkan

// Create two pipelines
vkCreateGraphicsPipelines(...&pipelineCreateInfo, ..., &pipelines.solid);
rasterizationState.polygonMode = VK POLYGON MODE LINE;

vkCreateGraphicsPipelines (...&pipelineCreateInfo, ..., &pipelines.wireFrame);

// Binding depending on user setting
vkBeginCommandBuffer () ;
vkCmdBindPipeline (.. .&pipelines.active...);
vkEndCommandBuffer () ;

// On user toggle : need to rebuild cmd buffer

15

No more state machine

e Describing what (and how) you want to draw upfront
= Shader attribute bindings (locations and format) part of the
pipeline
= Shader resources bound using descriptor sets
o No more glUniform¥*i/u/b/whatever
o Samplers (and images)
o Uniform block objects
o Requires proper descriptor pool setup!
e Render passes
= Store references to attachments to be rendered to
= | oad and store ops for attachments
= Can have mulitple sub passes
= Resolve and preserve attachments (sub passes)
o E.g. MSAA, MRT

16

Render passes

Wrong storeOp in depth attachment description

Tty
v
A3k :
..‘fi:.?‘l:- :’? : ":!1 L
i L
L L s
VK_ATTACHMENT_STORE_OP_ instead of VK_ATTACHMENT_STORE_OP_

17

Resource management

Your responsibility now!

Images and buffers (unlike GL)

Need to manually allocate (and release!) memory

= Different memory types depending on implementation
= Need to find memory type index for usage

Correct usage flags (VK_BUFFER_USAGE_%*)

For images

= | ayout transitions (VK_IMAGE_LAYOUT_%*)

= Crucial for some GPUs (e.g. AMD)

= Set for all layers / levels (single barrier with range)

18

Resource management

e Vertex buffer

bufferInfo.usage = VK BUFFER USAGE VERTEX BUFFER BIT;
vkCreateBuffer(...); . N N N
vkGetBufferMemoryRequirements (...);

// Custom function to find appropriate memory type index
// To upload data, you need to find one with host visible bit set
getMemoryType (...VK MEMORY PROPERTY HOST VISIBLE BIT...);
vkAllocateMemory (...); B B
vkMapMemory (...) ;

// Copy data

memcpy (..)

vkUnmapMemory (...) ;

e Texture with mip maps

// Prepare for transfer

imageMemoryBarrier.oldLayout = VK IMAGE LAYOUT PREINITIALIZED;
imageMemoryBarrier.newLayout = VK IMAGE LAYOUT TRANSFER DST OPTIMAL;
imageMemoryBarrier.subresourceRange.levelCount = texture.mipLevelCount;

vkCmdPipelineBarrier(...&imageMemoryBarrier) ;

// Copy mip levels from linear image or (better) buffer
for (uint32 t level = 0; level < texture.miplevels; ++level) {...}

// Prepare for shader usage

imageMemoryBarrier.oldLayout = VK IMAGE LAYOUT TRANSFER DST OPTIMAL;
imageMemoryBarrier.newLayout = VK IMAGE LAYOUT SHADER READ ONLY OPTIMAL;
vkCmdPipelineBarrier (...&ilmageMemoryBarrier); B B B

Drawing stuff

e Render commands recorded in command buffers
= Similar to NV_command_list (OpenGL)
» Build once, reuse often
o Can use secondary command buffers
o Can be created outside of the main thread!
o E.g. only add secondary buffer if object is visible
e Example:

vkBeginCommandBuffer (commandBuffer, ...);
vkCmdBeginRenderPass (commandBuffer, ...);
// Dynamic states

vkCmdSetViewport (...);

// Bind descriptor sets (shader attribute binding points)
vkCmdBindDescriptorSets (.. .pipelinelayout, ... &descriptorSet, ...);

// Bind the rendering pipeline (including the shaders)
vkCmdBindPipeline (...VK PIPELINE BIND POINT GRAPHICS, pipelines.solid);
// Draw

vkCmdBindVertexBuffers(...) ;
vkCmdBindIndexBuffer(...);
vkCmdDrawIndexed (...) ;
vkCmdEndRenderPass (commandBuffer) ;

vkQueueSubmit () ;

Synchronization Objects

Something rarely used in OpenGL (except compute)
= Doing them wrong will harm performance

= Hard to get right

Fences (heavy!)

= Synchronize between GPU and CPU (host)
Barriers and events

= Synchronize within command buffer

= F.g. Image layout transitions

Semaphores

= Synchronize queue submissions (also across queues)
m E.g. sync presentation and rendering

21

Synchronization Objects

Missing post present barrier (strict hardware)

22

Some tips...

Learned during development

Use staging

e Create buffer with host visibility (transfer source)

pufferInfo.usage = VK BUFFER USAGE TRANSFER SRC BIT;

vkCreateBuffer (...);
vkGetBufferMemoryRequirements (...);

getMemoryType(...VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT...);
vkAllocateMemory (...)

// Map and copy data to buffer

e Create device local buffer (transfer dest)

bufferInfo.usage = VK BUFFER USAGE VERTEX BUFFER BIT | VK BUFFER USAGE TRANSFER DST BIT;
// Create an empty buffer with same size as staging buffer
vkCreateBuffer(...);

getMemoryType (...VK MEMORY PROPERTY DEVICE LOCAL BIT...);

* Copy

VkBufferCopy copyRegion = {};
copyRegion.size = vertexBufferSize;

vkBeginCommandBuffer () ;
vkCmdCopyBuffer (...©Region) ;
vkEndCommandBuffer () ;

// Submit command buffer

// Delete staging buffer

24

Prefer optimal tiling

e For images
e Linear tiling features be very limited

Format
© RBG8B8A8_UNORM

Linear tiling features
+ SAMPLED_IMAGE_BIT
« BLIT_SRC_BIT
« SAMPLED IMAGE FILTER_ LINEAR BIT

Optimal tiling features
« SAMPLED_IMAGE_BIT
« STORAGE_IMAGE_BIT
« COLOR_ATTACHMENT_BIT
« COLOR_ATTACHMENT_BLEND_BIT
« BLIT_SRC_BIT
« BLIT_DST_BIT
« SAMPLED_IMAGE_FILTER_LINEAR_BIT

e Use staging

= Check format flags with vkGetPhysicalDeviceFormatProperties
= (Create device local image with optimal tiling

imageCreatelInfo.tiling = VK IMAGE TILING OPTIMAL;

getMemoryType (...VK MEMORY PROPERTY DEVICE LOCAL BIT...);

= Copy from linear image or (better) buffer

25

Hardware differences

e Not all GPUs are equal
= Correct image layout/usage crucial on AMD
= NVIDIA GPUs ignore image layout
= [ntel (Open Source) also pretty strict
= Performance on tile based renderers?
e Make sure validation reports no errors

e Store properties of physical device

vkGetPhysicalDeviceProperties (physicalDevice, &deviceProperties);

= Limits and features in one place
m Easier to access than with GL

= Fasy to check at runtime

assert (sizeof (pushConstantBlock) <= deviceProps.limits.maxPushConstantsSize) ;

Use the Validation layers

e Save you lots of trouble!
= No more "why the hell is everythin black"

e Like GL_ARB_debug_output but much better
= Messages generated by the layers, not the driver
= Consistent validation across all implementations

e Available if the SDK is installed
= |ayers for memory, threading, images, draw state, etc.

e Performance penalty!
= Don't enable by default
e Example (raw tate validation layer) :

// Missing image memory barrier before first use
Cannot submit cmd buffer using image with layout

ERROR: [DS]Code 6 :
VK _IMAGE LAYOUT PREINITIALIZED when first use is VK IMAGE LAYOUT SHADER READ ONLY OPTIMAL

e Unsure about a validation message?
= | ook (or step) into the layer source

27

Push Constants

Small block for easy (and fast) shader data updates
Spec requires at least 128 bytes (Two 4x4 matrices!)
Declared in shader

layout (push constant) uniform PushConsts {
mat4d m;
} pushConsts;

Vulkan specific, so use glslangvalidator from SDK to convert!

Part of the pipeline layout

VkPushConstantRange pushConstantRange;
pushConstantRange.stageFlags = VK SHADER STAGE VERTEX BIT;
pushConstantRange.size = sizeof (pushConstantBlock);
pipelinelayoutCreateInfo.pPushConstantRanges = &pushConstantRange;

Update during render pass

vkCmdPushConstants (...VK SHADER STAGE VERTEX BIT...pushConstantBlock.data());

No need to use a uniform block object (and descriptor set)

28

Multi threading

(| () i

e Full multi thread support!

e Stream resources, generate render workload
e Great for mobile devices
e More on this by Mathias...

YA

Thanks for listening!

‘
(Vun(am
N
2 wifh /
ll“t%a.& A
e In

NDUST | RY I"ORG\ :D

Keep on forging :)

